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A class of ‘exact ’ steady and unsteady solutions of the Navier-Stokes equations in 
cylindrical polar coordinates is given. The flows correspond to the motion induced by 
an infinite disc rotating in the (5, y)-plane with constant angular velocity about the 
z-axis in a fluid occupying a semi-infinite region which, a t  large distances from the 
disc, has velocity field proportional to (x, -y,O) with respect to a Cartesian 
coordinate system. It is shown that when the rate of rotation is large KBrmLn’s exact 
solution for a disc rotating in an otherwise motionless fluid is recovered. In the limit 
of zero rotation rate a particular form of Howarth’s exact solution for three- 
dimensional stagnation-point flow is obtained. The unsteady form of the partial 
differential system describing this class of flow may be generalized to time-periodic 
flows. In addition the unsteady equations are shown to describe a strongly nonlinear 
instability of KBrman’s rotating disc flow. It is shown that sufficiently large 
perturbations lead to a finite-time breakdown of that flow whilst smaller disturbances 
decay to zero. If the stagnation point flow at infinity is sufficiently strong the steady 
basic states become linearly unstable. In fact there is then a continuous spectrum of 
unstable eigenvalues of the stability equations but, if the initial-value problem is 
considered, it is found that, at  large values of time, the continuous spectrum leads 
to a velocity field growing exponentially in time with an amplitude decaying 
algebraically in time. 

1. Introduction 
Our concern is with the strongly nonlinear instability of the boundary layer on a 

rotating disc, an important feature of our investigation is that the stability problem 
which we discuss corresponds to an exact solution of the Navier-Stokes equations. 
In addition, our investigation uncovers a class of exact steady and unsteady 
Navier-Stokes solutions relevant to the flow over a rotating disc immersed in a three- 
dimensional stagnation-point flow field. 

The importance of the problem for the boundary layer on a rotating disc is due to 
the fact that the flow can be thought of as a prototype stability problem for 
boundary-layer flows over swept wings. Some years ago Gregory, Stuart & Walker 
(1955) showed that the flow over a rotating disc is highly unstable to an inviscid 
‘ crossflow ’ instability associated with the highly inflexional velocity profiles which 
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occur in certain directions. Their calculations pointed to the particular importance 
of a stationary mode of instability associated with an effective velocity profile having 
an inflexion point at a position of zero flow velocity. The structure of the Gregory 
et al. mode in the nonlinear case was later discussed by Bassom & Gajjar (1988), the 
latter authors show that in that regime a nonlinear critical-layer structure develops. 
This mode is apparently the one most preferred in an experimental situation if the 
background disturbance level is sufficiently small. However, though most experi- 
mental investigations of the rotating-disc problem have clearly identified the 
stationary crossflow structure described by Gregory et al. (1955), some experiments 
have pointed to the existence of a second type of vortex structure associated with 
some type of subcritical response caused by another type of instability, see for 
example Federvov et al. (1976). 

A possible cause for this second type of stationary vortex structure is the viscous 
stationary crossflow vortex identified numerically by Malik (1986) and described 
using essentially triple-deck theory by Hall (1986). Later MacKerrell(l987) was able 
to show that this mode is destabilized by nonlinear effects and therefore might cause 
the subcritical instability observed experimentally. However, a key feature of the 
mechanism described by Hall (1986) is that the crucial balance of forces leading to 
instability is one between Coriolis and viscous forces, thus in swept-wing flows this 
mechanism is possibly not operational. An alternative source of breakdown caused 
by a finite-amplitude instability in more general three-dimensional boundary layers 
is the one discussed in this paper. Though we shall formulate and solve the resulting 
nonlinear interaction equations in cylindrical polar coordinates it is easy to see the 
relevance of the structures we find to flows more naturally described in Cartesian 
coordinates. 

In  $2 we shall formulate the nonlinear interaction equations describing the flow 
over a rotating disc immersed in a three-dimensional stagnation point flow. In 93 
we shall discuss some steady equilibrium states of these equations, in particular 
we describe the non-unique nature of the solutions of these equations. In $4 we 
concentrate on the unsteady form of the interaction equations and we discuss the 
linear and nonlinear instability of the flow over a rotating disc in an otherwise still 
fluid. Our calculations in that section point clearly to a threshold amplitude response 
of the flow ; thus a sufficiently large initial disturbance causes an unbounded velocity 
field to develop after a finite time. The singularity structure associated with this 
'blow-up' is discussed in $5. Since the interaction equations which we derive in $3  are 
obtained without neglecting any terms in the NavierStokes equations the 
singularity discussed in $5 is a singularity of the full Navier-Stokes equations in 
three dimensions. Singularities of the Euler equations have been discussed by, for 
example, Stuart (1987), however, there is no obvious connection between that work 
and that discussed here. Finally, in $6 we draw some conclusions. 

2. The equations for combined disc-stagnation point flows 

may be written 
With respect to cylindrical polar coordinates ( r ,  8, z )  the Navier-Stokes equations 

(2.1 a)  
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divu = 0, ( 2 . l b )  

where (u, v, w) is the velocity field corresponding to ( r ,  8, z )  and p ,  p and v are the fluid 
pressure, density and kinematic viscosity respectively. The operators V and A 
appearing in (2.1) are the gradient and Laplacian operators in cylindrical polar 
coordinates. We define dimensionless time and axial variables T and [ by 

(2.2a, b) 

where 52 is a constant angular velocity. We seek a solution of (2.1) in the form 

u = 52ra([,T)+~{52U([,T)e2i8+c.c.} ,  

v = sZrV([, T )  +L{iQU([, T )  ezis+ c.c.}, 

w = (52v)it8([, T ) ,  

( 2 . 3 ~ )  

(2.3b) 

( 2 . 3 ~ )  

= !&22r2 + vQp([ ,T)  + 522r2{ J(T) e2ie + cc.}. (2.3d) 
P 

Here h is a constant whilst C.C. denotes ‘complex’ conjugate’. We note that (2.3) 
reduces to Ktirmtin’s solutions for the flow over a rotating disc if we set U = J = 0.  
If we substitute (2.3) into (2.1) we find the crucial result that the nonlinear terms in 
the radial and azimuthal momentum equations generate no terms proportional to 
e*4ie. This means that (2.3) is an exact NavierStokes solution and we find that the 
equations to determine the functions appearing in (2.3) are 

and 

( 2 . 4 ~ )  

(2.4b) 

( 2 . 4 ~ )  

(2.4d) 

(2.5) 

Before writing down boundary conditions appropriate to (2.4), (2.5) it is perhaps 
worth commenting on the motivation for the choice of the special form (2.3). 
Balakumar, Hall & Malik (1991) investigated the instability of Karman’s solution 
to non-parallel travelling wave modes of wavenumber n in the azimuthal direction. 
These high-Reynolds-number modes can be made nonlinear in the manner suggested 
by the vortex-wave interaction structure of Hall & Smith (1991). In  that structure 
the amplitude of the non-parallel mode with azimuthal wavenumber n is adjusted 
until it drives a mean flow correction comparable with the unperturbed state. For 
O(1) values of n it turns out that, because of the comparable size of the three 
disturbance velocity components in the analysis of Balakumar et al. (1991), only the 
n = f2 modes can be made strongly nonlinear in the manner described by Hall & 
Smith (1991) and then the appropriate form of the disturbed flow is (2.3). However, 
the structure (2.3), suggested by the interaction described by Hall & Smith, is 
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applicable at  all Reynolds numbers rather than just at high Reynolds numbers where 
the work of Balakumar et al. (1991) applies. Thus we can interpret (2.3) as a ‘mean 
field’ type of disturbed flow with the @dependent part representing a wave 
superimposed on KSrmSn’s solution which now evolves in time as the disturbance 
develops. We note that in this interaction no terms in the NavierStokes equations 
have been neglected. 

We close this section with a discussion of the boundary conditions associated with 
(2.4), (2.5). We assume that as the flow evolves, the mean (with respect to 8) part of 
the velocity field, i.e. (a, V, m), satisfies 

a = o ,  V = 1 ,  m = o ,  c = o ,  
a,u+o, [+ 00. 

( 2 . 6 ~ )  

(2.6b) 

Next we assume that the wavelike part of the flow satisfies 

U = O ,  [ = O ,  U+yeiNT, [+m, (2.7) 

where y is a constant and N is a constant dimensionless frequency. In order that the 
a, and U equations are consistent with the above conditions h and J must be chosen 
such that 

= - y2, J = -iyNeiNT. (2.8a, b) 

Having made the above choice of boundary conditions we can seek solutions of (2.4), 
(2.5) which are periodic in time with period 2n/N, the steady-state solutions of (2.4), 
(2.5) are found by setting N = 0. It follows from the form of the nonlinear term u2 
in ( 2 . 4 ~ )  that we can seek solutions (a, V, a) independent of time so that (a, F, a) and 
U satisfy 

m * + 2 a u * + a u ‘  = U,+iNy, ( 2 . 9 ~ )  

(2.9b) 

2GV+?EVc = Vcc, ( 2 . 9 ~ )  

2a+mc = 0, (2.9d) 

a = o ,  a = l ,  m = o ,  u*=o, [ = O ,  (2.9e) 

a2 + 10*12 -d + mac = y2 + ace, 

a , V + O ,  [+ 00, u*+ y, [+ 00, (2.9f) 

where we have replaced U([ ,  T) by eiNTU*([). The non-periodic solutions satisfy 

(2.10a) 

(2.10c) 

(2.10d) 

(2.10b) 

a=o,  a = l ,  m = o ,  u=o, [ = O ,  (2.10 e )  

~ = F = O ,  g = O ,  U-+yeiNT, [+a, (2.10f) 

a=$([), ~ = v ^ ( [ ) ,  U = O ( [ ) ,  T = O  (2.109) 

Thus the periodic solutions can be found by integrating an ordinary differential 
system, (2.9), whereas the unsteady modes satisfy a parabolic partial differential 
system. For that reason we have been required in (2.10) to give initial conditions to 
completely specify the problem for a, F, m and U. Furthermore, we note that (2.10) 
can be regarded as the appropriate nonlinear initial-value instability problem for the 
periodic problem (2.9). In the next section we shall discuss the solution of (2.9). 
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3. Steady solutions of the interaction equations 
In order to begin the solution of (2.9) by some appropriate numerical method it is 

convenient to discuss limiting forms of that system which can then be used to begin 
the calculation. The first limit we consider is y+O in which case the problem for a, 
Band becomes uncoupled from that for U* and is in fact simply Kirmin’s solution. 
Thus we know that in the limit y+O, u“(0) x 0.50, v’(0) x -0.61. Another known 
flow is found in the limit y +. 00. In that limit we write N = yNo and expand the 
velocity field as 

a = Y E O + . . . ,  ( 3 . 1 ~ )  

B =  vo+ ..., 
iij = yfiDo+ ..., 

u* = yuo+ ..., 

(3.1 b )  

( 3 . 1 ~ )  

(3.ld) 

where the functions appearing in the above expansions are functions of the stretched 
variable 5 = yic. In this limit the problem for ao, U,, iijo decouples from iiro and we 
obtain the system 

NOUO +2a0u0+m0u0 = u;+iivo, (3.2a) 

a;+Iuo12+iijoa; = l+%, 

2a0 + a; = 0, 

ao=o) m o = o ,  u,=o, 5 = 0 ,  

ao+o, Uo+l ,  &--+a, 

(3.2b) 

( 3 . 2 ~ )  

(3.2d) 

(3.2e) 

In  the special caseN, = 0 we can relate (3.2) to a special case of the three-dimensional 
stagnation-point flows considered by Howarth (1951), Davey (1961), Banks & 
Zaturska (1989). We recall that, with respect to Cartesian coordinate 5, y, z, Howarth 
identified the class of exact NavierStokes solutions given by 

where U,, Ve are velocities and I is a length. The variable 7 is defined by 

f 
9 = (5) z. 

Here f’, g‘ satisfy 
f ’ 2 - ( ( f + a g ) f ”  = l+f”, 

1 g / 2 -  g + - f  g” = l + - g ” ’ ,  ( 3 a 

with a = Ve/Ue and subject to 

f = g = f ’ = g ’ = O ,  7 = 0 ,  

f ’ , g ’ + l ,  7 + m .  

(3-4) 

(3.6a) 

(3.5b)  

(3.6a) 

3.6b) 

These solutions correspond to a three-dimensional stagnation-point flow above the 
plane z = 0. In the special case a = - 1 we can relatef’ and g‘ to the functions a0, U, 
with No = 0 by writing 

2G0 = f ’ - g ’ ,  -m0 = f - g ,  2u0 = f ’ + g ’ .  
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For this value of a Davey (1961) gives f" = 1.2729, g" = -0.8112 which suggests 
that for large y the solutions of (2.9) with No = 0 are such that 

u"(0) = 1.042$+ ..., 
O*'(O) = 0.231$+ .... 

(3.7a) 

(3.7b) 

However, we shall see below that the solution of (2.9) is not unique so Davey's 
solution corresponds to only one of our solutions at large values of y.  For non-zero 
values of No a similar asymptotic structure can be obtained but the coefficients in the 
expansions (3.7a, b)  will, of course, be functions of the frequency. Before giving the 
results of our numerical investigation of (2.9) we note that, from (3.1), for y 9 1, the 
dominant terms in the steady-state solution of (2.3a, b,  c) are such that 

ao+U0cos28, -Uosin28, (3.8) 

where without any loss of generality we have taken Uo to be real. If we transform 
(3.8) to Cartesian coordinates we obtain a velocity field 

u - szy xao+xuo, yao-yuo, (&ymO], [ (3.9) 

and comparison of (3.3), (3.9) then confirms our previous remarks. 
In  practice the numerical solution of (2.9), and indeed the reduced large y problem, 

(3.2), is not straightforward. The reason why there is a difficulty with the numerical 
solution of (3.2) was first discussed by Davey (1961) and later in more detail by 
Schofield & Davey (1967). In order to see what this difficulty is we consider the large 
f limit of the equations to determine (a, V, a, O*) in (2.9) withN = 0. Suppose that for 
59 1 we write 

where w,  is a constant and u+, v+, W+ and U+ are small. For simplicity we assume that 
U+ is real. It is an easy matter to show that the linearized equations for u+, v+ can 
be reduced to 

(a,V,a,u*) = (u+,v+,w++woo, y+U+), 

(&-W,;yu+ = 4y2u+, 

($-w,;)v+ = 0,  

(3 .10~)  

(3.10 b)  

and U+, w+ can be found in terms of u+, v+. Thus for large f we can write 

u+ = A ,  exp (m, f) + A ,  exp (m, 5) +A3 exp (m3 0, 
v+ = B, exp (w, 5).  

Here m,, m2, m3 are given by the values of m which satisfy 

2m = w, & (w: f 8y)i (m, < 0) ,  (3.11) 

and we note that two of the required values will be complex when Iy > @:. Thus we 
have five independent constants w,,A1,A2,A3 and B, which can be iterated upon in 
order to satisfy the four required conditions at  5 = 0. It follows that there will be a 
continuum of solutions of (2.9) since there is no reason to ignore any of the decaying 
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Y 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

WcO 

-0.355 
-0.390 
-0.410 
-0.450 
-0.500 
-0.550 
-0.600 
-0.650 
-0.700 
-0.750 
-0.800 
-0.850 
-0.900 
-0.950 
-1.OOO 
- 1.050 
-1.100 
-1.150 
- 1.200 
-1.250 
- 1.300 
- 1.350 
-1.400 
-1.500 
-1.800 
- 1.700 
-1.800 
-0.510 
-0.550 
-0.600 
-0.650 
-0.700 
-0.750 
-0.800 
-0.850 
-0.900 
-0.950 
-1.000 
-1.100 
- 1.200 
- 1.300 
-1.400 
-1.500 
-1.600 
- 1.700 
-1.800 
-1.900 
-0.600 
-0.800 
-1.OOO 
-1.500 
-2.000 
-2.500 
- 3.000 
-3.500 
-4ooo 
-m 
-5Ooo 

u'(0) 

0.51152874 
0.510 89963 
0.510801 89 
0.51069253 
0.51062290 
0.510585 52 
0.510564 18 
0.510551 85 
0.51054493 
0.510 534 
0.51054015 
0.51054034 
0.510541 51 
0.51054334 
0.51054560 
0.510548 15 
0.51056088 
0.510 553 70 
0.51055657 
0.51055945 
0.51056231 
0.510565 13 
0.51056790 
0.510573 24 
0.51057830 
0.5 10 583 06 
0.51058753 
0.520 252 70 
0.518461 72 
0.517961 37 
0.517 791 86 
0.517 751 62 
0.51777457 
0.517 831 40 
0.51790706 
0.517 993 09 
0.818 084 49 
0.518 178 18 
0.51836538 
0.51854617 
0.518717 23 
0.518877 48 
0.519 026 93 
0.51916605 
0.51929552 
0.51941606 
0.51952843 
0.681 97809 
0.68831733 
0.697 567 16 
0.7 16 533 43 
0.730267 10 
0.74056061 
0.74852620 
0.76489053 
0.76008693 
0.76441004 
0.768063 12 

v'(0) 
-0.609315 13 
-0.61151223 
-0.612081 08 
-0.61291648 
-0.61366951 
-0.614 242 23 
-0.614 700 76 
-0.615 079 74 
-0.61540001 
-0.615 675 22 
-0.615383 
-0.616 125 71 
-0.61631296 
-0.61648051 
-0.616631 43 
-0.616768 16 
-0.61689265 
-0.61700654 
-0.617111 15 
-0.617 207 60 
-0.617 296 82 
-0.617 379 62 
-0.61745666 
-0.61 7 595 80 
-0.617 71805 
-0.61782635 
- 0.617 922 99 
-0.606 635 20 
- 0.612 095 94 
-0.615 119 10 
-0.617 25674 
-0.61895371 
- 0.620 370 81 
-0.62158902 
-0.622 65639 
-0.62360449 
-0.62445542 
-0.62522548 
- 0.626 569 93 
-0.627 709 15 
-0.628 690 11 
-0.62954560 
-0.630 29943 
-0.63096949 
-0.631 56952 
-0.632 11033 
-0.632 goO51 
-0.662317 75 
-0.71390532 
-0.733 101 49 
-0.75988878 
- 0.775 524 48 
-0.786 14433 
-0.793 90866 
-0.799 85908 
-0.804 57555 
-0.80841092 
-0.81159360 

U"(0) 

0.01281756 
0.010 152 61 
0.009453 87 
0.00842226 
0.007 487 87 
0.006 774 97 
0.00620302 
0.006 729 62 
0.005 329 12 
0.004 984 69 
0.00468459 
0.00442034 
0.00418557 
0.003 975 42 
0.003 78607 
0.003 614 47 
0.003458 17 
0.003315 16 
0.003 183 77 
0.003062 61 
0.002 960 60 
0.002 846 46 
0.002 74962 
0.00257472 
0.00242100 
0.00228479 
0.002 16323 
0.03934270 
0.03382640 
0.030 743 44 
0.028527 67 
0.026 74543 
0.025241 72 
0.02393845 
0.022 788 91 
0.021 762 19 
0.020836 38 
0.019985 20 
0.01851929 
0.017261 78 
0.016 174 16 
0.015222 17 
0.01438070 
0.013630 75 
0.012957 62 
0.012 349 70 
0.01179769 
0.201 29254 
0.16251868 
0.144691 29 
0.1 15 976 86 
0.097 448 03 
0.084 206 84 
0.074206 19 
0.066363 31 
0.060 003 20 
0.05482446 
0.06064039 

TABLE 1. Values of u"(O), V (0 )  and o*'(O) obtained for different values of y and w, 
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\ ,I 
\b' 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  
s 

FIQURE 1. The function @(() for different values of y ,  w,, (a) y = 0.02, W ,  = -0.355; (b)  
y = 0.02, w, = -1.8; (c) y = 0.5, W ,  = -1.8; (d) y = 0.5, w, = -0.6; (e) y = 1, w, = -2.828. 

exponential solutions. Clearly w, will vary in this continuum so the solutions can be 
labelled by the size of the inflow towards the disc a t  infinity. This situation persists 
in the large y limit where wk - y ; Schofield & Davey (1967) argued that the solutions 
should in this case be fixed by discarding the slowest decaying exponential. Whilst 
it is certainly true that this fixes the solution, there is no basis for making such an 
assumption. Having made that assumption Schofield & Davey concluded that, in our 
notation, w2 = 8y. Interestingly enough we shall see later that this choice of w, fixes 
the boundary between linearly stable and unstable solutions of (2.9). We now present 
results obtained for the system (2.9) in the steady case N =  0. 
As mentioned above, at large values of 6 we have five constants, A,, B,, A,, A,, w, 

at  our disposal once the constant y has been fixed. In our calculations we fixed y ,  w, 
and iterated on the remaining four constants until the required boundary conditions 
at g = 0 were satisfied after integrating the differential equations in (2.9) from a 
suitably large value of to the origin. This integration was carried out using a fourth- 
order Runge-Kutta scheme or a compact finite-difference scheme. We concentrated 
our attention on the cases y = 0.02, 0.1, 0.5 and in table 1 we show the values of 
u"(O), v ' ( O ) ,  fr*'(O) obtained for the different values of y ,  w, shown. We see that for 
each of the values of y there are values of w: greater and less than 8y. For each of the 
values of y used, we were able to find solutions of (2.9) only for w, less than some 
critical value. Thus for example when y = 0.02 we were unable to find solutions of 
(2.9) for w, greater than -0.355. Our calculations suggested that this minimum 
value decreases when y increases. In figures 1 4  we show the functions a, V, 67, u* for 
different values of y ,  w,. Figures 1 4  show that a, a, o* are not always monotonic 
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FIQURE 2. The function v([) for different values of y,  w,. (see figure 1 for values.) 

a 

-0.2 

-0.4 
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- 1.0 

- 1.2 
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- 1.6 

W(O 

- 1.8 

- 2.0 

-2.2 

-2.4 

-2.6 

- 2.8 

-3.0 
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FIQURE 3. The function in(5) for different values of y ,  w,. (See figure 1 for values.) 
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J) (b) 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6  

1 

Y 
FIGURE 4. The function o*([) for different values of 7 ,  w,. (See figure 1 for values.) 
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Numerical result 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 

Y 
FIQURE 5. The shear ~ ~ ( 0 )  for w', = 8y. 
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Y 
FIQVRE 6. The shear DF(0) for w> = 8y. 

functions of 7. Our limited calculations suggest that, for a given y ,  the profiles 
become more oscillatory as w, increases. A referee of this paper has suggested that 
the oscillatory behaviour of some of the solutions might be relevant to the question 
of which of the possible solutions are stable. 

Further solutions of (2.9) were obtained for the case wk = 8y and our results are 
shown in figures 5 and 6. In figures 1 4  we have plotted the solution for y = 1, 
w, = 8 for comparison with the results for w: =+ 8y. We recall that Davey 
obtained solutions of the large y problem in a different context and that his results 
were obtained by neglecting the slowest decaying exponential solution at large 5. 
Having made that approximation Davey found numerically that w: = 87 to the 
numerical accuracy of his calculations. Thus we expect that our results in figures 5 
and 6 should reduce to those of Davey at  sufficiently large values of y .  In  fact, we 
have in these figures shown Davey’s results expressed in our notation and we see that 
our results approach (3.7) for large y. However, we stress at this point that there is 
no reason why the solutions of (2.9) obtained by rejecting a particular decaying 
exponential solution of that system at large 5 should be preferred, we hope to shed 
some light on the selection mechanism for the different solutions later in this paper. 

4. Unsteady solutions of the interaction equations in the absence of a 
stagnation flow at infinity 

We shall now discuss the solutions we have obtained for the unsteady form of the 
interaction equations. We restrict our attention to the case when the stagnation- 
point flow vanishes at infinity. This means that we are in effect discussing the finite- 
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amplitude instability of KBrmBn’s solution. Note, however, as kindly pointed out to 
the authors by a referee, the energy of the imposed disturbance is infinite. This means 
that our work is perhaps only relevant to a finite part of any physically realizable 
flow. In the Appendix we shall give a limited discussion of the more general problem 
when the stagnation flow does not vanish at  infinity. In the absence of a stagnation 
flow at infinity we apply the conditions U = 0, g = 0, U+ 0, c+ CQ. The appropriately 
modified form of (2.10) is found to be 

Uc5- u, = 2au+ mus, (4. 1 a) 

aC5-aT = a2+~Up4i-+a5, (4.1 b)  

(4.16) 

a+m, = 0, (4.1 d )  

a = m = U = O ,  a = l ,  g = o ,  (4.1 e) 

B c-5 -v, = 2av+mq, 

%,a, u+o, g-. 00, (4 . l f  1 
ti = 6(C), w = v“([) ,  U = O(f;), T = 0. (4Jg) 

The above system is parabolic in T and can be solved by marching forward in time 
from T = 0; we note here in passing that + cannot be specified arbitrarily, at 
T = 0 it must be deduced from 6 using the continuity equation. For large values of 
T the solution of (4.1) will approach Ktirmtin’s solution if that flow is stable. We can 
therefore regard (4.1) as the nonlinear initial-value instability problem for Ktirman’s 
rotating-disc flow. However, we should bear in mind that (4.1) describes only finite- 
amplitude disturbances with azimuthal wavenumber f 2. 

In the first instance, we restrict our attention to small initial perturbations from 
KBrmBn’s solution, we therefore write 

(6,6,8) = (E, ,F,O)+(u*,  w*, O*), 

(a,a,+,U) = (E+C,’U=+G”,++,O) 

where (U=,Z) Ktirman’s solution and u* etc. are small. We now substitute 

in (4.1) and linearize to obtain the following decoupled problems: 

oc5- 0, = 2E17+G05, ( 4 . 2 ~ )  

o=o, g = o ,  00, (4.2b) 

O =  0*, T = 0 ,  ( 4 . 2 ~ )  

and C 55 -C, = 2EC-2,Ffi+a-i5++E5, (4 .34 

(4.3b) 

(4.36) 

(4 .34 

(4-3f 1 

(4.3e) 

It should be pointed out that in the above equations we have in effect assumed 
that O ( o * )  N O(u*) N O(v*) ; a modified form of the equations can be derived when 
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O ( o * )  - O(u*)i. In that case a nonlinear term lq2 must be inserted into the right- 
hand side of the .ii equation. This particular case would be important only if the d 
problem were unstable. We can integrate (4.2), (4.3) formally by taking a Laplace 
transform in time. When the transform is inverted the nature of the solution will 
depend crucially on whether either of the eigenvalue problems 

or 

( 4 . 4 4  

(4.4b) 

y"-uy = 2Ey-2Fz+Gyf+x@, (4.5a) 

Z N - U Z  = 2Ez+2yv=+Gz'+xv=', (4.5b) 

2y+x' = 0, (4.54 

x(0) = y(0) = z (0 )  = y( 00)  = z( m) = 0, ( 4 . 5 4  

has an eigenvalue u with positive real part. We shall now discuss these eigenvalue 
problems. 

The above eigenvalue problems were solved numerically ; no unstable eigenvalues 
of either system were found so we conclude that Ktirmtin's solution is stable to small- 
amplitude perturbations of the type discussed here. In  fact, no discrete stable 
eigenvalues were obtained either. This is because both eigenvalue problems have a 
continuous spectrum over part of the plane ur < 0. The origin of this continuous 
spectrum can be seen from ( 4 . 4 ~ )  by taking c %  1. We then see that the two 
exponential solutions of the equation for y both decay if u is within the parabola 
gr = -at/wL where w, = E(m).  Thus in this region we can always find a solution of 
(4.4) by combining the two independent solutions for y at infinity to satisfy the 
required condition at the wall. A similar continuous spectrum can be seen to exist for 
the system (4.5) ; we expect the continuous spectra to play an important role in the 
initial-value problems (4.2), (4.3). Indeed, since there is apparently no discrete 
spectrum associated with (4.4), (4.5) it is clear that the initial-value problem must in 
some sense be described completely by the continuous spectrum. 

The initial-value problem can be solved by taking Laplace transforms and 
inverting for particular forms of the initial perturbation. These inversions cannot in 
general be carried out analytically but their large-time behaviour can be 
approximated asymptotically in a routine manner. Rather than use the Laplace 
transform method we shall instead look directly for the large-time behaviour of (4.2), 
(4.3). We restrict our attention to (4.2), but a similar approach can be used for (4.3). 

Suppose that w, denotes the limiting value of 3 at large values of c, we choose to 
express d in the form 

(4.6) 8 = M(Y, T )  exp [+(wm Y)-a(wL T)] .  

Mcc+ (w, -G) Mc+ ;( -ZW, + w&)M = M ,  + 2 a .  

Here the function M satisfies the modified equation 

(4.7) 

At this stage we assume that all the exponential time dependence of the disturbance 
has been taken out by the substitution (4.6) so that M has only an algebraic 
dependence on T. Note, however, that the following discussion confirms that we can 
indeed obtain a consistent asymptotic solution of the problem by including all the 
exponential time dependence of the disturbance in the exponential term in (4.6). It 
is well known for the heat equation that the similarity variable c/fl essentially 
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replaces 5 when the initial-value problem is solved. Here the situation is slightly more 
complicated and, for large T ,  we must seek a solution of (4.7) for f; = O(1) and 
f; = O( fl). Thus for f; = O( 1) we write 

M = TjMo( [ )+  ...: 
where j is to be determined and M ,  satisfies the ordinary differential equation 

This equation must be solved subject to M, = 0 ,  6 = 0 and the resulting solution will 
then have M ,  - cc  for large c, here c is an arbitrary constant which can be set equal 
to unity but whose actual value depends on the form of the initial disturbance. Now 
let us find the required form for M in the upper region, before doing so we note that 
the constant j is left unknown a t  this stage since it plays no role in the zeroth-order 
solution in the lower region. I n  the upper layer we write 

(4.9) M = T'+:Bo( 2) + . . . , 
where 2 is the similarity variable [/Ti. Note here that the matching condition with 
the lower layer now requires that for small 2, B0 - 2. 

The equation to determine a, is found to be 

@++jw0-(j++)Bo = 0. (4.10) 

Here a prime denotes a derivative with respect to 2. In  order that the disturbance 
decays to zero at large values of 2 we must insist that behaves like the 
exponentially decaying solution of the above equation ; since it must also go to zero 
like 2, for small 2 we can show that the required solution is 

(4.11) 

Here n is an odd integer, U(a, x) is a parabolic cylinder function whilst the constant 
j has been chosen to satisfy the matching condition at 2 = 0, this gives 

j = -g, -9  2, -Z+ 2 . a -  * (4.12) 

It follows that the solution will be dominated by the j = -% eigensolution for large 
enough values of the time, the overall amplitude of this and the other decaying 
modes can only be determined by solving the initial-value problem. In  order to verify 
the above large- time behaviour of the solution of the linearized perturbation 
equation for we integrated (4.2) forward in time from T = 0 for the three cases: 

case a 

m e  b 

case c 

We note that it is sufficient for us to consider real initial data for 0 if we are solving 
(4.2). The results we obtained are shown in figure 7; in order to pick out the dominant 
exponential decay factor of 8 we have plotted (log (@ O&O, T ) ) T .  On the basis of our 
discussion above we see that this quantity should tend to -+wL - -0.2 for large T. 
We see that each of the above cases leads to results consistent with our predictions. 
In fact it is easy to show that the correction to the growth rate in the limit of large 
T is 0(Y2), the results shown in figure 7 confirm this prediction. In  order to see why 
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5 10 15 20 25 
T 

FIGURE 7. The growth rate (log fl 8&0, T)), for (a) 8* = [exp ( -  c) ; (b )  o* = [cos [exp ( -  [) ; 
(c) o* = cexp [ - ([-2)*]. The predicted growth rate a t  large T is -+I& x -0.2. 

this is the case, we note, for example, that the difference between the calculated 
growth rates and their asymptotic value decreases by a factor of about 4 when T 
increases from 10 to 20. A similar analysis to that carried out above for (4.2) can be 
given for (4.3), again the outcome is that a two-layer structure is required to describe 
the large-time behaviour of the disturbance, furthermore the functions C, v“ are found 
to decay exponentially for large T with the same decay rate as that found above. We 
note also that large-time instability analysis given above is related to that given by 
Bodonyi & Ng (1984) for swirling flows above discs; the authors thank a referee for 
pointing out that reference. 

We shall now report on some calculations carried out for the full nonlinear problem 
(4.1) with initial conditions 

$ = B = O ,  O = ~ c e x p [ - ( ~ - 2 ) ~ ] ,  (4.13) 

for S = 0.35, 0.45, 0.55, 0.65. The results obtained for the initial conditions given 
above are typical of those we have found for a wide range of disturbances. The results 
we found are shown in figure 8 where we have shown the growth rates 

For the two smaller values of the amplitude constant 6 we see that the disturbance 
decays to zero so that KBrman’s solution is stable, note that figure 8 ( d )  for S = 0.35 
confirms the linear decay rate, -0.2, at sufficiently large values of T .  The 
calculations for the two larger values of 6 demonstrate that KBrmBn’s solution is 
subcritically unstable. At a finite value of T our calculations encountered a 
singularity and could not be continued further. We did, of course, check that the 
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FIGURE 8. (a) The growth rate r1 = (log!," tP dc), for 6 = 0.35,0.45,0.55,0.65. (a) The growth rate 
uz = (logJ,"$dc), for 6 = 0.35, 0.45, 0.55, 0.65. (c) The growth rate ua = (logj," Vdc), for 
6 = 0.35, 0.45, 0.55, 0.65. (d) The growth rate u4 = (log!@U'(O, T)), for 6 = 0.35, 0.45, 0.55, 0.65. 
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FIGURE 9. (a) The velocity field a(() for S = 0.55, T = 3.505,3.51, ... . (b) The velocity field ~ ( ( 5 )  for 
8 = 0.55, T = 3.505,3.51, ... , (c) The velocity field m([)  for 6 = 0.55, T = 3.505,3.51, ... . (d) The 
velocity field U(C) for 6 = 0.55, T = 3.505,3.51, ... . 

6 5 

singularity remains when the 5 and T step lengths were decreased. In figure 9 we 
show the velocity field for the case S = 0.55, T = 3.505, 3.51, .... We see that as the 
singularity develops the velocity field spreads away from the wall. We note that as 
the singularity develops, the profiles for a, V, U are of the same shape. Furthermore 
calculations for other initial disturbances confirmed the threshold type of response 
described above. 

Thus, we have found that Karman’s rotating-disc solution is unstable to finite- 
amplitude infinite energy n = f2 modes whereas in the linear regime we have 
stability to this type of disturbance. We have made no attempt to investigate the 
dependence of the required threshold amplitude of the instability on the form of the 
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initial disturbance. For the case discussed above instability occurs when the 
disturbance velocity field is of size comparable to the unperturbed state. Thus, this 
particular type of disturbance is unlikely to be present in an experimental 
investigation so that it is unlikely that this disturbance would cause transition. 
However, it  is not unreasonable to expect that a detailed investigation of a more 
general class of initial conditions would isolate more dangerous disturbances which 
might cause instability in an experimental facility with moderate background 
disturbances. 

5. Singular solutions of the interaction equations 
The calculations described in the previous section suggest that a singularity of the 

interaction equations (4.1) develops at a finite time. If we assume that as the 
singularity develops, inviscid effects dominate over most of the flow, then aT - a2 
and it follows that we must have a - (T-  T)-l as the singularity develops ; a similar 
argument shows that B has this same scale. It then follows from the continuity 
equation and the momentum equations that if the thickness of the layer in which the 
disturbance develops is O(T-T)-$ then a - (T-T)-($+l) with $ > 0. However, an 
investigation of the matching problems associated with the outer edge of this layer 
suggests to the authors that only the case y5 = t  is possible and we therefore 
concentrate on th?t casp 

We now define 5 by 5 = [(T- T)i and then write 

v - = TT+ $,tQ ... , (5.lb) 

( 5 . 1 ~ )  

( 5 . l d )  

The zeroth-order problem for Os, Zi,, 8,, 6, is obtained by substituting the above 
expansions into the interaction equations and equating dominant terms in the limit 
of small p- T .  We find that o,, 8, satisfy the same equations so, if 8,+ 0, we can 
write 

0, = ( 1  + rFd,)+, 

with 8> - 1 .  If we then eliminate Zi, from the radial momentum equations using 
continuity we arrive at the following coupled pair of equations for 8,, 6,: 

(26, - t) 6&+ 26,p = 488; + q p ,  
(26, - 5) 8,s'- 28, 6,p = - 28,, 

A 

(5.2a) 

(5.2 b)  

and since viscous effects are negligible in the derivation of (5.2) we must solve these 
equations subject to 

6,=0, c;=o. (5.3) 

11 FLM 287 
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For positive values of 6 an exact solution of (5 .2 )  is 

P .  Hall, P .  Balakumar and D.  Papageorgiu 

and if 

zi,, = i, 486," = 1 ,  (5 .44  

6= o an exact solution is 

6, = 2c. (5 .4b)  

We note here that if &= 0 there is no coupling between the GS, 6, equations so we can 
take 6, = 0. However, neither of the above exact solutions is bounded at infinity, so 
they are not acceptable solutions. In  fact it can be shown that (5 .2)  does not admit 
solutions which have 8,, 6,. tending to zero a t  infinity. We shall see below that the 
required exponential decay of the singular solutions is taken care of by viscous 
effects. 

We now choose some positive constant &> 0 and restrict our attention to the 
solution of (5 .2 )  on [ O , a .  In order to solve (5 .2 )  it is useful to note that, for a given 

these equations are invariant under the transformation : 

zi, 
5, v, = us, (5.5) 

5 = 2 - 1 ,  - i  6 = 2 & - - '  - 
5 , 5  

so that C,, 6, now satisfy (5 .2 )  with f replaced by c and subject to - 
(5 .6 )  6 =-1 2)  g =  - 1 .  

The form of (5 .2 )  enables us to seek solutions which have C,, 6, respectively even and 
odd functions of t o n  [ - 1 ,  I]. We can show that the small csolution of (5 .2 )  having 
the required symmetry is 

( 5 . 7 4  - 1  v s = - 6  - c=S"+pp+ ..., 2$ 

for 6+ 0 whilst for 6= 0 we have 

6, = 2y"+pp+ ..., (5 .7b)  

In (5 .7a,  b )  the constant /3 is unknown at this stage; we note again that in the special 
case 6= 0 it is sufficient to set Cs = 0 since there is no coupling between the radial and 
azimuthal momentum equations. It should also be noted that both of the above small 

solutions for 6, are above the line 2 6 ,  = f on which (5 .2)  is singular. The constant 
/3 is now chosen such that the small t solutions lead to functions 6, satisfying 
28, = 1 ,  f = 1. Since 6, is an odd function of 3 it  follows that the inviscid boundary 
(5 .6)  condition at the wall, is therefore satisfied. Thus we choose /3 such that the 
solutions of (5 .2)  corresponding to (5 .7 )  are singular at the points y"= _+ 1 .  In  fact, for 
positive 6 it is easy to show that the only solution of (5 .2)  satisfying (5.6), ( 5 . 7 ~ )  can 
be written down in closed form and is 

(5.8a, b)  

We were unable to find an exact solution of (5 .2 )  corresponding to (5 .7b )  but by 
numerical integration we found that the required value of /3 is /3 = -2.129. It has 
been pointed out to the authors by an anonymous referee that (5 .8b)  has in fact been 
found previously by Bodonyi & Stewartson (1977),  and Banks & Zaturska (1979).  
The latter authors were concerned with singular solutions relevant to counter- 
rotating flow over discs and spheres respectively. The functions 6,,6,, for 8= 0, 
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z 
FIGURE 10. (a) The function 69, for a= 

0 0.2 0.4 0.6 0.8 1.0 z 
0,  6+ 0. ( b )  The function Gst for 6= 0, a+ 0. 

8+ 0 are shown in figure 10. We must now show how the solutions determined above 
in th? region 5 = O ( T -  T)-i connect with viscous structure at  the boundaries and 
near g = We shall concentrate on the solution which connects with (5.8), a similar 
analysis can be given for the second solution. 

We first note from (5.8a, b)  that for [- & 1 

2qsa; = 6,[, 6, - +;++?(& 1 ) 3 +  ... . 
The reguired structure at the wall is found by noting that, in view of (5.5), the above 
small 5 solutions of (5.2) imply that a, V, 8, and U all become O( 1)  when [+ 1 becomes 
O(T-T)-f. This suggest that the inviscid structure found above connects with a 
viscous boundary layer of thickness O( 1) in terms of 6 at the wall. Thus the solution 
for 5 = 0(1)  is found by solving the full interaction equations (4.1) subject to the no- 
slip condition at the wall and with matching conditions at  infinity implied by the 
small [limit of the inviscid solution. This boundary layer is clearly passive and can 
be calculated in a manner similar $0 that which we now outline for the more 
complicated viscous structure near 5 = It is easy to show from (5.8) that when 
26, = 1,  i.e. n_ear f = 1,  the functions 5,,22?r, - y are respectively quadratic and cubic 
functions of 5-c This implies that the limiting form of the inviscid solution near 
5 = c,(T'- T); gives 

together with similar expansions for a, U whilst 8 takes the form 

( 5 . 9 ~ )  

(5 .9b)  

and we note that the expansions for V, U are similar to (5.9a), The above expansions 
show that a, V, U and 8- [c/(T = T):].  become O( 1) within a layer of depth O( 1) in 
terms of 5 around the position 5 = RT- T)i. Hence, we therefore look for a solution 
of the full interaction equations in a layer of depth 0 ( 1 )  propagating in the positive 

11-2 
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[-direction with speed [c,(P- T);].. The appropriate boundary-layer variable is 
therefore defined by 

g* = [-- c 
( T - T ) ~ '  

and we seek a solution of (4.1) of the form 

U = u*(T, c*) + O(P- T)t, 

for and similar expansions for v, U whilst for tij we write 

c 
W -  - = w*(T,[*)+O(T-T)i. 
- [ (T-T)t]* 

(5 .10~)  

(5.10b) 

We note that u*, v*, w*, U* all depend on T rather than T'- T. This means that the 
required decay of the singular solution at infinity is not determined in terms of a 
similarity variable involving T'- T. In order to see why this should be the case it is 
helpful to consider the model problem 

1 = yxx, yz 
Yt+- 

2(t -t)2 
(5.11) 

subject to Y =  F ( x ) ,  t = 0 ,  Y+O, 1z1+OO. (5.12) 

The above system is singular at t = JZ If the function F has compact support then the 
solution of the above initial-value problem is given by 

l m  
Y = 7 I F(O) exp { - [x - f - l/(F- t)&l2} dZ. 

(47tt)E -m 
(5.13) 

Thus even though the differential equation for Y is singular at t = 6 when calculated 
in 8 coordinate frame moving to the right with speed l/(C-t)a, Y is not singular; 
however we note that this speed tends to infinity as t + L  

The structure discussed above for the model equation is precisely the type of 
behaviour implied by (5.10). If the expansions (5.10) together with the similar 
expansions for v, U are substituted into (4.1) and the leading-order terms are retained 
in the limit T +  T'- we find that u*, v*, w*, U* satisfy the full unsteady interaction 
equations but with aC replaced by +. The appropriate boundary conditions are 
obtained by matching with the inviscid solution and insisting that, apart from w*, 
all the velocity components should tend to zero at infinity. The matching conditions 
obtained from the inviscid solution yield : 

whilst at infinity we require 
(5.14) 

u*,v*,u*, +o, [*+OO. (5.15) 

We are, of course, interested in the solution of the partial differential system for u*, 
v*, w*, U* in the limit of small T-T,  hence we can obtain the required solution by 
finding a similarity solution using the variable x = LJT'; and expanding the solution 
about T = T. We therefore write 

(5.16) 
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and we can then show that the ordinary differential system to determine ti, G, zit, d is : 
GZ-v'2+ir?+zi t i i ,  = Gxx+;xGx+t i ,  ( 5 . 1 7 ~ )  

2G5+ = Gxx + v'+ i X C x ,  (5.17 b )  

2iLS+zi,Sx = S x x + O + ~ x O x ,  ( 5 . 1 7 ~ )  

2ti+Zijx = 0,  (5.17d) 

subject to G , 5 , 0 + 0 ,  x + m ,  (5.17e) 

and 

(5.17f 1 
Now let us discuss the nature of the flows associated with the singular solutions 

found above. We note that the singular solution consists of an inviscid region of 
depth O(T-T)-i together with viscous boundary layers a t  the wall and at the edge 
of the inviscid region. The singular solution with S = 0 corresponds to an 
axisymmetric stagnation-point type of flow. 

The solution (5.8) corresponds to a three-dimensional stagnation-point type of 
singular flow. In order to see why this is the case, we note that in the inviscid region 
the velocity field corresponding to (5.8) with respect to a Cartesian coordinate system 
is 

- = ([ x(@ - 1 )  - - ?Zk(T- T)-1, [ ;- y( 1 + @)I ?Zk( T- T)-1, @ y1 2u 
n 

Here @ = (1 +El): and we note that the above velocity field cannot be transformed 
to plane stagnation-point form by rotating the (x, y)-axes; however, a flow of the 
latter type can be found by noting that, in addition to (5.8), the interaction equations 
in the inviscid equation have the further exact solution 

(5.19) 

With respect to a Cartesian coordinate frame the above solution corresponds to 

- U = (0. - y q ,  ($Zs)+ ..., 
Q 

(5.20) 

which is of plane stagnation-point form. 
It remains now for us to determine if the singular solutions derived above describe 

the singularity found numerically in the previous section. We note here that in many 
other calculations we found singular velocity fields similar to those shown in (4.3). In 
fact, our calculations suggest that over most of the range of values of y the functions 
a, a, U differ only by a scale factor. This is entirely consistent with the singularity 
structure (5.18) and in fact a in figure 9(c) is clearly as predicted by (5 .8b) .  In 
addition the function ais as predicted by ( 5 . 8 ~ )  so it would seem that the second type 
of singularity is the one encountered numerically. The results shown in figure 9 are 
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FIQURE 11. ( a )  A comparison between the collapsed data for 4 from figure 9(a )  and the singular 
solution. ( b )  A comparison between the collapsed data for @ from figure 9(c) and the singular 
solution. 

typical of what we obtained in many other cases, in order to show conclusively that 
the singularity described above is the one found numerically we now collapse the 
data of figure 9 into a form which can easily be compared with (5.8). 

In order to collapse the results in figure 9 we carried out the following procedure. 
First, we take the curves in figure 9 (a) and rescale the horizontal and vertical scales 
such that the maximum of ti always occur at 5 = and has the value 1. We then rescale 
the horizontal scales for the corresponding curves of figure 9 ( c )  and scale .iij such that 
a+$, <+ a. Figure 11 shows the collapsed data for ti, rn obtained in this way 
together with the inviscid solution (5.18). We see that the collapsed data is consistent 
with the predicted flow. We note that the data of figures 9 ( b )  and 9(d) when 
collapsed in the same way agree equally well with predicted inviscid flow. Finally, we 
point out that in all our calculations the breakdown found was always of the type 
indicated in figure 11. 

6. Conclusion 
We have seen in the previous section that sufficiently large initial perturbations to 

KarmLn’s rotating-disc flow lead to the development of a singularity of the 
NavierStokes equations. 

If we assume that the structure we have found can be induced experimentally then 
a question of some importance is that of how the singularity can be controlled through 
the Navier-Stokes equations once it has begun. Since no terms in the NavierStokes 
equations have been neglected in the analysis leading to the singularity it might 
appear that the singularity must be controlled by an alternative set of field 
equations. However, we do not believe that is the case, more precisely we believe that 
once the singularity has begun to develop the velocity profiles associated with it will 
be massively unstable to inviscid modes with aximuthal wavenumbers =!= f2; these 
modes will then grow and prevent the further development of the singularity. The 
latter conjecture could, of course, be verified by Navier-Stokes simulations, we do 
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not attempt such an investigation here. Certainly the modes discussed by Gregory 
et al. (1953) would be unstable in the initial stages of the development of the n = 2 
modes. In addition, time-dependent version of the latter ‘crossflow’ mode would also 
be unstable. It should be remembered that (2.3) can only be valid for finite range of 
values of the radial variable. Thus the expansion (2.3) is only valid in some local 
region of a more complicated flow structure; for example we could consider the 
situation when the disc is finite and some three-dimensional trailing-edge flow must 
be matched onto (2.3). It is possible that the singularity structure we have found 
could be destroyed by the flow away from the region where (2.3) is valid. 

The typical size of initial amplitude associated with (4.13) required to cause the 
development of a singularity was found to be comparable with a typical basic state 
velocity. Thus, the breakdown we have described could only be provoked by a 
disturbance amplitude unlikely to be present in an experimental situation. However, 
it  would be very surprising if the initial amplitude required to induce the singularity 
could not be significantly reduced by allowing a much more general initial 
perturbation. A possible way of isolating the most dangerous type of initial 
perturbation would be to formulate the energy stability problem associated with the 
interaction equations. 

Another open question following our discussion in $3 is which, if any, of the 
different equilibrium states for non-zero y are most physically relevant. Our linear 
instability analysis in the Appendix strongly suggests that all those equilibrium state 
with w: < 8y are not relevant physically since they are linearly unstable. It remains 
an open question as to whether nonlinear effects are able to further reduce the class 
of physically realizable flows. 

P.H. wishes to thank SERC and AFOSR for partial support of this work. The 
authors would also like to thank the referees for useful comments on the original 
version of this paper. Also Professor J. T. Stuart has pointed out to us that he and 
Dr S. Allen had previously derived (4.1) in some unpublished work. 

Appendix. The linear instability problem for the steady states with y + 0 
Here we shall discuss the instability of the steady equilibrium solutions of (2.9) 

with N = 0. We denote this steady state by ( E ,  F, G, 0 and suppose that we consider 
the instability of this flow to a time-dependent small perturbation (6, vv”, 63, @ such 

(A 1) 
that 

From (2.10) the linearized perturbation equations for (6, v“, 8,O) are 

- 
( 6 , C , 8 ,  U )  = (u*,v*, w*, U*),  T = 0. 

(A 2) I 0T+2E0+260+G0c+80c  = Dee, 
C, ~ 2 E . i i + 2 y 2 U D - 2 ~ C + G C e + ~ E c  = Gee, 

CT + 2Ev”+ 2CF+ GCc+ 8i7c = Ccc, 

2.ii+8c = 0, 

subject to 

and (A 1). Again the initial-value problem can be solved by a Laplace transform in 
T but the form of (A 2) means that the resulting ordinary differential equations in 5 
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must be solved numerically. Following our approach in $4 we consider the eigenvalue 
problem u = u ( y )  obtained by replacing aT by u in (A 2) and applying (A 3). The 
structure of the disturbed flow at C; = co is then found by letting C;+ co in (A 2) after 
replacing aT by u and a, by m ;  the appropriate equations to determine m are - 

(m2-w,m-u) U = 2C, (A 4 4  

(m2-w,m-u)Q = 2y0,  (A 4b) 

(m2-w,m-u)v" = 0. (A4 c) 

The first of these equations corresponds to (A4c) and leads to the continuous 
spectrum ur < -ui/w: found in $4. However, (A 5a, b) lead to the continuous 
spectra, 

The positive root corresponds to the case when C = - y o  in (A 4a, b) and, 
surprisingly, we obtain an unstable continuous spectrum for y > 0. However, it 
remains to be seen whether this unstable continuous spectrum can induce a 
physically relevant exponentially growing solution. In order to answer this question 
we shall now seek a large-time solution of (A 2) ; the structure we choose is based on 
the assumption that a t  large times the unstable spectrum ( A 6 a )  effectively 
dominates the flow. The first step in our solution procedure is the substitution 

(C,v",zZ,q = (u+,v+,w+,U+)exp(iw,C;-@2,T+ZyT). (A 7) 

The functions u+, v+ etc., are then found in the regions where 5 = O ( l ) ,  C; = O(Tf). In 
the region where C; = 0(1 )  we write 

(u+, v+, W+, U+) = !qu;v;, w:, u;) + . . ., 
where u; etc., depend only on C;. The problem for these functions is obtained from 
(A 2) and solved subject to 

u+ = v; = w; = u;: = 0, g = 0, 0 

and the unknown quantities ui'(O), v:'(O), w:' are chosen such that 

ui - yC;, U; - - g, vo + 0 exponentially C;+ co. 

The constant j again remains unknown in the solution of the 5 = 0(1 )  problem; 
however an investigation of the problem with C; = O ( @ )  shows that matching with 
the above solution can only be achieved if j is again determined by (4.12). Thus we 
conclude that the steady-state solutions with w,  > 8y are linearly unstable and so 
not likely to be observed. 
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